3.8: Implicit Differentiation (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    2497
    • 3.8: Implicit Differentiation (1)
    • Gilbert Strang & Edwin “Jed” Herman
    • OpenStax

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Learning Objectives
    • Find the derivative of a complicated function by using implicit differentiation.
    • Use implicit differentiation to determine the equation of a tangent line.

    We have already studied how to find equations of tangent lines to functions and the rate of change of a function at a specific point. In all these cases we had the explicit equation for the function and differentiated these functions explicitly. Suppose instead that we want to determine the equation of a tangent line to an arbitrary curve or the rate of change of an arbitrary curve at a point. In this section, we solve these problems by finding the derivatives of functions that define \(y\) implicitly in terms of \(x\).

    Implicit Differentiation

    In most discussions of math, if the dependent variable \(y\) is a function of the independent variable \(x\), we express y in terms of \(x\). If this is the case, we say that \(y\) is an explicit function of \(x\). For example, when we write the equation \(y=x^2+1\), we are defining y explicitly in terms of \(x\). On the other hand, if the relationship between the function \(y\) and the variable \(x\) is expressed by an equation where \(y\) is not expressed entirely in terms of \(x\), we say that the equation defines \(y\) implicitly in terms of \(x\). For example, the equation \(y−x^2=1\) defines the function \(y=x^2+1\) implicitly.

    Implicit differentiation allows us to find slopes of tangents to curves that are clearly not functions (they fail the vertical line test). We are using the idea that portions of \(y\) are functions that satisfy the given equation, but that y is not actually a function of \(x\).

    In general, an equation defines a function implicitly if the function satisfies that equation. An equation may define many different functions implicitly. For example, the functions

    \[y=\sqrt{25−x^2}\nonumber \]

    and

    \[y=\begin{cases}\sqrt{25−x^2}, & \text{if }−5≤x<0\\ −\sqrt{25−x^2}, & \text{if }0≤x≤5\end{cases}\nonumber \]

    which are illustrated in Figure \(\PageIndex{1}\), are just two of the many functions defined implicitly by the equation \(x^2+y^2=25\).

    3.8: Implicit Differentiation (2)

    If we want to find the slope of the line tangent to the graph of \(x^2+y^2=25\) at the point \((3,4)\), we could evaluate the derivative of the function \(y=\sqrt{25−x^2}\) at \(x=3\). On the other hand, if we want the slope of the tangent line at the point \((3,−4)\), we could use the derivative of \(y=−\sqrt{25−x^2}\). However, it is not always easy to solve for a function defined implicitly by an equation. Fortunately, the technique of implicit differentiation allows us to find the derivative of an implicitly defined function without ever solving for the function explicitly. The process of finding \(\dfrac{dy}{dx}\) using implicit differentiation is described in the following problem-solving strategy.

    Problem-Solving Strategy: Implicit Differentiation

    To perform implicit differentiation on an equation that defines a function \(y\) implicitly in terms of a variable \(x\), use the following steps:

    1. Take the derivative of both sides of the equation. Keep in mind that \(y\) is a function of \(x\). Consequently, whereas \[\dfrac{d}{dx}(\sin x)=\cos x\nonumber \] and \[\dfrac{d}{dx}(\sin y)=\cos y\cdot\dfrac{dy}{dx}\nonumber \] because we must use the chain rule to differentiate \(\sin y\) with respect to \(x\).
    2. Rewrite the equation so that all terms containing \(dy/dx\) are on the left and all terms that do not contain \(dy/dx\) are on the right.
    3. Factor out \(dy/dx\) on the left.
    4. Solve for \(dy/dx\) by dividing both sides of the equation by an appropriate algebraic expression.
    Example \(\PageIndex{1}\): Using Implicit Differentiation

    Assuming that \(y\) is defined implicitly by the equation \(x^2+y^2=25\), find \(\dfrac{dy}{dx}\).

    Solution

    Follow the steps in the problem-solving strategy.

    \(\dfrac{d}{dx}(x^2+y^2)=\dfrac{d}{dx}(25)\) Step 1. Differentiate both sides of the equation.
    \(\dfrac{d}{dx}(x^2)+\dfrac{d}{dx}(y^2)=0\) Step 1.1. Use the sum rule on the left. On the right \(\dfrac{d}{dx}(25)=0\).
    \(2x+2y\dfrac{dy}{dx}=0\) Step 1.2. Take the derivatives, so \(\dfrac{d}{dx}(x^2)=2x\) and \(\dfrac{d}{dx}(y^2)=2y\dfrac{dy}{dx}\).
    \(2y\dfrac{dy}{dx}=−2x\) Step 2. Keep the terms with \(\dfrac{dy}{dx}\) on the left. Move the remaining terms to the right.
    \(\dfrac{dy}{dx}=−\dfrac{x}{y}\) Step 4. Divide both sides of the equation by \(2y\). (Step 3 does not apply in this case.)

    Analysis

    Note that the resulting expression for \(\dfrac{dy}{dx}\) is in terms of both the independent variable \(x\) and the dependent variable \(y\). Although in some cases it may be possible to express \(\dfrac{dy}{dx}\) in terms of \(x\) only, it is generally not possible to do so.

    Example \(\PageIndex{2}\): Using Implicit Differentiation and the Product Rule

    Assuming that \(y\) is defined implicitly by the equation \(x^3\sin y+y=4x+3\), find \(\dfrac{dy}{dx}\).

    Solution

    \(\dfrac{d}{dx}(x^3\sin y+y)=\dfrac{d}{dx}(4x+3)\) Step 1: Differentiate both sides of the equation.
    \(\dfrac{d}{dx}(x^3\sin y)+\dfrac{d}{dx}(y)=4\) Step 1.1: Apply the sum rule on the left. On the right, \(\dfrac{d}{dx}(4x+3)=4\).
    \(\left(\dfrac{d}{dx}(x^3)⋅\sin y+\dfrac{d}{dx}(\sin y)⋅x^3\right)+\dfrac{dy}{dx}=4\) Step 1.2: Use the product rule to find \(\dfrac{d}{dx}(x^3\sin y)\). Observe that \(\dfrac{d}{dx}(y)=\dfrac{dy}{dx}\).
    \(3x^2\sin y+(\cos y\dfrac{dy}{dx})⋅x^3+\dfrac{dy}{dx}=4\) Step 1.3: We know \(\dfrac{d}{dx}(x^3)=3x^2\). Use the chain rule to obtain \(\dfrac{d}{dx}(\sin y)=\cos y\dfrac{dy}{dx}\).
    \(x^3\cos y\dfrac{dy}{dx}+\dfrac{dy}{dx}=4−3x^2\sin y\) Step 2: Keep all terms containing \(\dfrac{dy}{dx}\) on the left. Move all other terms to the right.
    \(\dfrac{dy}{dx}(x^3\cos y+1)=4−3x^2\sin y\) Step 3: Factor out \(\dfrac{dy}{dx}\) on the left.
    \(\dfrac{dy}{dx}=\dfrac{4−3x^2\sin y}{x^3\cos y+1}\) Step 4: Solve for \(\dfrac{dy}{dx}\) by dividing both sides of the equation by \(x^3\cos y+1\).
    Example \(\PageIndex{3}\): Using Implicit Differentiation to Find a Second Derivative

    Find \(\dfrac{d^2y}{dx^2}\) if \(x^2+y^2=25\).

    Solution

    In Example \(\PageIndex{1}\), we showed that \(\dfrac{dy}{dx}=−\dfrac{x}{y}\). We can take the derivative of both sides of this equation to find \(\dfrac{d^2y}{dx^2}\).

    \(\begin{align*} \dfrac{d^2y}{dx^2}&=\dfrac{d}{dy}\left(−\dfrac{x}{y}\right) & & \text{Differentiate both sides of }\dfrac{dy}{dx}=−\dfrac{x}{y}.\\[4pt]
    &=−\dfrac{\left(1⋅y−x\dfrac{dy}{dx}\right)}{y^2} & & \text{Use the quotient rule to find }\dfrac{d}{dy}\left(−\dfrac{x}{y}\right).\\[4pt]
    &=\dfrac{−y+x\dfrac{dy}{dx}}{y^2} & & \text{Simplify.}\\[4pt]
    &=\dfrac{−y+x\left(−\dfrac{x}{y}\right)}{y^2} & & \text{Substitute }\dfrac{dy}{dx}=−\dfrac{x}{y}.\\[4pt]
    &=\dfrac{−y^2−x^2}{y^3} & & \text{Simplify.} \end{align*}\)

    At this point we have found an expression for \(\dfrac{d^2y}{dx^2}\). If we choose, we can simplify the expression further by recalling that \(x^2+y^2=25\) and making this substitution in the numerator to obtain \(\dfrac{d^2y}{dx^2}=−\dfrac{25}{y^3}\).

    Exercise \(\PageIndex{1}\)

    Find \(\dfrac{dy}{dx}\) for \(y\) defined implicitly by the equation \(4x^5+\tan y=y^2+5x\).

    Hint

    Follow the problem solving strategy, remembering to apply the chain rule to differentiate \(\tan y\) and \(y^2\).

    Answer

    \[\dfrac{dy}{dx}=\dfrac{5−20x^4}{\sec^2y−2y} \nonumber \]

    Finding Tangent Lines Implicitly

    Now that we have seen the technique of implicit differentiation, we can apply it to the problem of finding equations of tangent lines to curves described by equations.

    Example \(\PageIndex{4}\): Finding a Tangent Line to a Circle

    Find the equation of the line tangent to the curve \(x^2+y^2=25\) at the point \((3,−4)\).

    Solution

    Although we could find this equation without using implicit differentiation, using that method makes it much easier. In Example \(\PageIndex{1}\), we found \(\dfrac{dy}{dx}=−\dfrac{x}{y}\).

    The slope of the tangent line is found by substituting \((3,−4)\) into this expression. Consequently, the slope of the tangent line is \(\dfrac{dy}{dx}\Big|_{(3,−4)}=−\dfrac{3}{−4}=\dfrac{3}{4}\).

    Using the point \((3,−4)\) and the slope \(\dfrac{3}{4}\) in the point-slope equation of the line, we obtain the equation \(y=\dfrac{3}{4}x−\dfrac{25}{4}\) (Figure \(\PageIndex{2}\)).

    3.8: Implicit Differentiation (3)
    Example \(\PageIndex{5}\): Finding the Equation of the Tangent Line to a Curve

    Find the equation of the line tangent to the graph of \(y^3+x^3−3xy=0\) at the point \(\left(\frac{3}{2},\frac{3}{2}\right)\) (Figure \(\PageIndex{3}\)). This curve is known as the folium (or leaf) of Descartes.

    3.8: Implicit Differentiation (4)

    Solution

    Begin by finding \(\dfrac{dy}{dx}\).

    \(\dfrac{d}{dx}\big(y^3+x^3−3xy\big)=\dfrac{d}{dx}\big(0\big)\)

    \(3y^2\dfrac{dy}{dx}+3x^2−\left(3y+3x\dfrac{dy}{dx}\right)=0\)

    \(3y^2\dfrac{dy}{dx}+3x^2−3y-3x\dfrac{dy}{dx}=0\)

    \(\left(3y^2-3x\right)\dfrac{dy}{dx}=3y-3x^2\)

    \(\dfrac{dy}{dx}=\dfrac{3y−3x^2}{3y^2−3x}\).

    Next, substitute \(\left(\frac{3}{2},\frac{3}{2}\right)\) into \(\dfrac{dy}{dx}=\dfrac{3y−3x^2}{3y^2−3x}\) to find the slope of the tangent line:

    \(\dfrac{dy}{dx}\Bigg|_{\left(\frac{3}{2},\frac{3}{2}\right)}=−1\).

    Finally, substitute into the point-slope equation of the line to obtain

    \(y=−x+3\).

    Example \(\PageIndex{6}\): Applying Implicit Differentiation

    In a simple video game, a rocket travels in an elliptical orbit whose path is described by the equation \(4x^2+25y^2=100\). The rocket can fire missiles along lines tangent to its path. The object of the game is to destroy an incoming asteroid traveling along the positive \(x\)-axis toward \((0,0)\). If the rocket fires a missile when it is located at \(\left(3,\frac{8}{5}\right)\), where will it intersect the \(x\)-axis?

    Solution

    To solve this problem, we must determine where the line tangent to the graph of

    \(4x^2+25y^2=100\) at \(\left(3,\frac{8}{5}\right)\) intersects the \(x\)-axis. Begin by finding \(\dfrac{dy}{dx}\) implicitly.

    Differentiating, we have

    \(8x+50y\dfrac{dy}{dx}=0.\)

    Solving for \(\dfrac{dy}{dx}\),

    we have

    \(\dfrac{dy}{dx}=−\dfrac{4x}{25y}\).

    The slope of the tangent line is \(\dfrac{dy}{dx}\Bigg|_{\left(3,\frac{8}{5}\right)}=−\dfrac{3}{10}\). The equation of the tangent line is \(y=−\dfrac{3}{10}x+\dfrac{5}{2}\). To determine where the line intersects the \(x\)-axis, solve \(0=−\dfrac{3}{10}x+\dfrac{5}{2}\). The solution is \(x=\dfrac{25}{3}\). The missile intersects the \(x\)-axis at the point \(\left(\frac{25}{3},0\right)\).

    Exercise \(\PageIndex{2}\)

    Find the equation of the line tangent to the hyperbola \(x^2−y^2=16\) at the point \((5,3)\).

    Hint

    \(\dfrac{dy}{dx}=\dfrac{x}{y}\)

    Answer

    \(y=\dfrac{5}{3}x−\dfrac{16}{3}\)

    Key Concepts

    • We use implicit differentiation to find derivatives of implicitly defined functions (functions defined by equations).
    • By using implicit differentiation, we can find the equation of a tangent line to the graph of a curve.

    Glossary

    implicit differentiation
    is a technique for computing \(\dfrac{dy}{dx}\) for a function defined by an equation, accomplished by differentiating both sides of the equation (remembering to treat the variable \(y\) as a function) and solving for \(\dfrac{dy}{dx}\)
    3.8: Implicit Differentiation (2024)

    FAQs

    What is the formula for implicit differentiation? ›

    The method of finding an implicit derivative is not so much a formula as it is a procedure, the steps for which will be detailed later in this article. However, a formula for implicit differentiation of y terms is, in essence, the Chain Rule: d u d x = d u d y ⋅ d y d x , where u is the term containing a y.

    How do you find implicit derivative? ›

    Implicit differentiation is the process of finding dy/dx when the function is of the form f(x, y) = 0. To find the implicit derivative dy/dx, just differentiate on both sides and solve for dy/dx. But in this process, write dy/dx wherever we are differentiating y.

    Can you do implicit differentiation with 3 variables? ›

    Now, we did this problem because implicit differentiation works in exactly the same manner with functions of multiple variables. If we have a function in terms of three variables x , y , and z we will assume that z is in fact a function of x and y . In other words, z=z(x,y) z = z ( x , y ) .

    How do you do implicit differentiation calculator? ›

    How to Use the Implicit Differentiation Calculator?
    1. Step 1: Enter the equation in a given input field.
    2. Step 2: Click the button “Submit” to get the derivative of a function.
    3. Step 3: The derivative will be displayed in the new window.
    4. Step 1: Differentiate the function with respect to x.
    5. Step 2: Collect all dy/dx on one side.

    What is implicit differentiation for dummies? ›

    In implicit differentiation, we differentiate each side of an equation with two variables (usually ‍ and ‍ ) by treating one of the variables as a function of the other. This calls for using the chain rule. Let's differentiate x 2 + y 2 = 1 ‍ for example. Here, we treat ‍ as an implicit function of ‍ .

    How to do differentiation of implicit functions? ›

    To differentiate an implicit function, we consider y as a function of x and then we use the chain rule to differentiate any term consisting of y. Now to differentiate the given function, we differentiate directly w.r.t. x the entire function. This step basically indicates the use of chain rule.

    Is implicit differentiation just chain rule? ›

    Implicit differentiation helps us find ​dy/dx even for relationships like that. This is done using the chain ​rule, and viewing y as an implicit function of x. For example, according to the chain rule, the derivative of y² would be 2y⋅(dy/dx).

    How to use implicit? ›

    Implicit is often followed by a preposition, and that preposition is usually in: "American Horror Story" is a pretty grisly show. No one should be too surprised by that revelation — it's sort of the promise implicit in its name, after all.

    How do you calculate implicit? ›

    In order to find the interest rate that is "implicit" or "implied" in this agreement, you need to do a mathematical calculation. The formula you will use is total amount paid/amount borrowed raised to 1/number of periods = x. Then x-1 x100 = implicit interest rate.

    How do you solve implicit formulas? ›

    Solving Implicit Equations
    1. Define the variable that needs to be determined as an unknown using the unknown block. ...
    2. Isolate zero on the right-hand side of the equation by moving all terms to the left-hand side.
    3. Construct the left side of the equation and equate the right side by using the constraint block to denote zero.

    What is the formula for implicit value? ›

    Implicit Equation

    The equation used for an implicit function is f(x, y) = c, where c is a constant. The f(x, y) shows that an implicit equation is a function of (i.e., depends on) both x and y. A function cannot be written as y = f(x) if it has two or more y-values for any x-value.

    What is the implicit differential equation form? ›

    A relation F ( x , y ) = 0 is said to be an implicit solution of a differential equation involving x, y, and derivatives of y with respect to x if F ( x , y ) = 0 defines one or more explicit solutions of the differential equation.

    Can you do implicit differentiation on TI-84? ›

    TI-84 Plus and TI-83 Plus graphing calculator program finds implicit and explicit derivatives and the tangent line of a point.

    What is the formula for differentiation? ›

    What Are Differentiation Formulas? The differentiation formula is used to find the derivative or rate of change of a function. if y = f(x), then the derivative dy/dx = f'(x) = limΔx→0f(x+Δx)−f(x)Δx lim Δ x → 0 ⁡

    Top Articles
    Latest Posts
    Article information

    Author: Msgr. Refugio Daniel

    Last Updated:

    Views: 6410

    Rating: 4.3 / 5 (54 voted)

    Reviews: 85% of readers found this page helpful

    Author information

    Name: Msgr. Refugio Daniel

    Birthday: 1999-09-15

    Address: 8416 Beatty Center, Derekfort, VA 72092-0500

    Phone: +6838967160603

    Job: Mining Executive

    Hobby: Woodworking, Knitting, Fishing, Coffee roasting, Kayaking, Horseback riding, Kite flying

    Introduction: My name is Msgr. Refugio Daniel, I am a fine, precious, encouraging, calm, glamorous, vivacious, friendly person who loves writing and wants to share my knowledge and understanding with you.